If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+5X=0
a = 1; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·1·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*1}=\frac{-10}{2} =-5 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*1}=\frac{0}{2} =0 $
| n+260=417 | | -10v+24=6-v | | -5u+4=-8u-5 | | (.25x)(.05x)+2.5=8.60 | | a/2.6=43 | | 3r^2-9r-6=0 | | 3x+2=-4x+7-5+7x | | 15.61x=86.1 | | 2x+8=4x+28 | | r-(-16)=14 | | 8r+8=9r | | x-23.5=13.8 | | 5x+3x=4x+18 | | -16t^2+24t=0.75 | | -12-4(2x-7)=12x-14+10x | | -5(x-13)=-125 | | 15x-12=5(3x-4) | | x-23.5*2/5=13.8 | | -9d-1=-d-9d-10 | | 3-9z=-10z+1 | | x+19=2(4x-1) | | 3(u+6)=-4u+32 | | 3(g-8)-7=-7 | | (13y-38)+62=180 | | 6-2/3p=12 | | 3(g−8)−7=–7 | | 6.67=v+2 | | (x)/(18)=(2(3+1))/(9) | | 3m+2(m-4)=6-m | | 2(h+7)-9=9 | | N/n+3=9/2 | | 1.1+2.2t=9.9 |